Ta có:
\(VT=a^2+4b^2+25-4ab+10a-20b+\left(b^2-2b+1\right)+2\)
\(VT=\left(a-2b+5\right)^2+\left(b-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=-3\\b=1\end{matrix}\right.\)
Ta có:
\(VT=a^2+4b^2+25-4ab+10a-20b+\left(b^2-2b+1\right)+2\)
\(VT=\left(a-2b+5\right)^2+\left(b-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=-3\\b=1\end{matrix}\right.\)
Chứng minh rằng \(A+4B\ge\frac{16AB}{1+4AB}\)
Chứng minh:
2√a2−ab+b2+ √a2−2ac+4c2+ √b2−2bc+4c2≥8c
Cho 1000 điểm a1,a2,a3,...,a1000 trên mặt phẳng . Vẽ 1 đường trọn có bán kính bằng 1. Chứng minh rằng tồn tại điểm M sao cho Ma1+Ma2+...+Ma1000\(\ge\)1000
Cho \(\left\{{}\begin{matrix}a,b>0\\\sqrt{a}+\sqrt{b}=1\end{matrix}\right.\). Chứng minh: 3(a+b)2-(a+b)+4ab\(\ge\)\(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
Cho a+b+c=6. Chứng minh rằng nếu c≥a; c≥b thì c≥a+b
Cho a,b là các số chẵn. Chứng minh rằng a2 + b2 viết được dưới dạng hiệu hai bình phương của 2 số nguyên
Cho a ≥ 1, b ≥ 1. Chứng minh rằng : a√b - 1 + b√a - 1 ≤ ab
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
help me vs
Chứng minh rằng: \(\left|\dfrac{m}{n}-\sqrt{2}\right|\ge\dfrac{1}{n^2\left(\sqrt{3}+\sqrt{2}\right)}\)