Violympic toán 9

PT

Cho \(\left\{{}\begin{matrix}a,b>0\\\sqrt{a}+\sqrt{b}=1\end{matrix}\right.\). Chứng minh: 3(a+b)2-(a+b)+4ab\(\ge\)\(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)

H24
15 tháng 12 2018 lúc 17:40

Áp dụng BĐT AM-GM: \(\dfrac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\dfrac{1}{4}\left(4a+4b\right)=a+b\)

Ta chứng minh: \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\)

hay \(3\left(a+b\right)^2+4ab\ge2\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\left(a+b-2\sqrt{ab}\right)^2\ge0\)( đúng)

Dấu = xảy ra khi \(a=b=\dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
BL
Xem chi tiết
BL
Xem chi tiết
TB
Xem chi tiết
PT
Xem chi tiết
BL
Xem chi tiết
VN
Xem chi tiết
BL
Xem chi tiết
EO
Xem chi tiết