Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 10: Tính chất chia hết của một tổng. Luyện tập

NT

chứng minh rằng :

a. A = 1 + 4 + 42 + 43 + ......... + 458 + 459 \(⋮\) 5; 21; 85

b. B = 5 + 53 + 55 + ......... + 5202 + 5203 \(⋮\) 31

HL
19 tháng 9 2017 lúc 9:34

a1. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)

A = \(5+4^2.5+...+4^{58}.5\)

A = \(5\left(1+4^2+...+4^{58}\right)⋮5\)

a2. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\)

A = \(21.\left(1+4^3+...+4^{57}\right)⋮21\)

a3. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2+4^3\right)+4^4\left(1+4+4^2+4^3\right)+...+4^{56}\left(1+4+4^2+4^3\right)\)

A = \(\left(1+4+4^2+4^3\right)\left(1+4^4+...+4^{56}\right)\)

A = \(85.\left(1+4^4+...+4^{56}\right)⋮85\)

Câu B sao thứ tự số mũ chẳng có quy luật vậy, sao mà làm được :v

Bình luận (2)
NH
19 tháng 9 2017 lúc 13:18

mình đặt tên cho dễ

A=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮5\)

A=(1+4)+4^2(1+4)+.....+4^58(1+4)

A=5+4^2.5+....4^58.5

A=5.(1+4^2+....+4^58) => đcpm

B=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮21\)

B=(1+4+4^2)+.........+(4^57+4^58+4^59)

B= (1+4+4^2)+4^3(1+4+4^2)+.....+4^47(1+4+4^2

B=(1+4+4^2)+1+4^3+.....+4^57)

B=21.(1+4^3+.....+4^57)\(⋮21\Rightarrowđcpm\)

Bình luận (2)

Các câu hỏi tương tự
TC
Xem chi tiết
NB
Xem chi tiết
TQ
Xem chi tiết
MA
Xem chi tiết
NQ
Xem chi tiết
KM
Xem chi tiết
DA
Xem chi tiết
YP
Xem chi tiết
NH
Xem chi tiết