Lời giải:
Cần bổ sung điều kiện $n$ là số nguyên dương. Nếu $n=0$ thì $A=11$ không là hợp số bạn nhé.
Ta có:
$2^{4n+1}=16^n.2\equiv 1^n.2\equiv 2\pmod 5$
Do đó $2^{4n+1}$ có dạng $5k+2$ với $k\in\mathbb{N}$
Mà $2^{4n+1}$ chẵn nên $5k+2$ chẵn. Do đó $k$ chẵn. Đặt $k=2t$ với $t\in\mathbb{N}$ thì $2^{4n+1}=10t+2$
$A=2^{2^{4n+1}}+7=2^{10t+2}+7$
$=(2^{10})^t.4+7$
Theo định lý Fermat nhỏ:
$2^{10}\equiv 1\pmod {11}$
$\Rightarrow A=(2^{10})^t.4+7\equiv 1^t.4+7\equiv 11\equiv 0\pmod {11}$
Vậy $A\vdots 11$. Với $n\in\mathbb{N}^*$ dễ thấy $A>11$. Do đó $A$ là hợp số (đpcm)