Violympic toán 9

TT

Bài 1: Cho a > 0, b > 0. Chứng minh rằng:
a/√b + b/√a >= √a + √b
Bài 2: Cho a, b, c là các đô dài của các cạnh tam giác và p là nửa chu vi. Chứng minh rằng:
(p - a)(p - b) <= c^2/4
Bài 3:Chứng minh rằng với mọi số thực a ta có:3(a^4+a^2+1)>=(a^2+a+1)^2
Bài 4:Cho 3 số thực dương a,b,c.chứng minh rằng:(1+a/b)(1+b/c)(1+c/a)>=8
Bài 5:Cho a,b là hai số dương. Chứng minh:a^2+b^2+1/a++1/b>=2(√a+√b)
Bài 6:Cho ba số dương a,b,c. Chứng minh rằng:ab/(a+b)+bc/(b+c)+ca/(c+a)<=(a+b+c)/2
Bài 7:Cho ba số thực dương a,b,c thỏa mãn:ab+bc+ca=3. Chứng minh rằng:
a^3/(b^2+3)+b^3/(c^2+3)+c^3/(a^2+3)>=3/4
bài 8:Tìm giá trị nhỏ nhất của hàm số f(x)=x+3/(x-2) với x>2

PL
9 tháng 6 2018 lúc 11:43

Bài 6 . Áp dụng BĐT Cauchy , ta có :

a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

⇔ ( a + b)2 ≥ 4ab

\(\dfrac{\left(a+b\right)^2}{4}\)≥ ab

\(\dfrac{a+b}{4}\)\(\dfrac{ab}{a+b}\) ( 1 )

CMTT , ta cũng được : \(\dfrac{b+c}{4}\)\(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\)\(\dfrac{ac}{a+c}\)( 3)

Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :

\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

\(\dfrac{a+b+c}{2}\)\(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)

Bình luận (0)
PL
9 tháng 6 2018 lúc 13:13

Bài 4.

Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :

\(1+\dfrac{a}{b}\)\(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)

\(1+\dfrac{b}{c}\)\(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)

\(1+\dfrac{c}{a}\)\(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)

Nhân từng vế của ( 1 ; 2 ; 3) , ta được :

\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)\(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)

Bình luận (0)
TT
8 tháng 6 2018 lúc 12:20

@Giáo Viên Hoc24.vn

@Akai Haruma

Bình luận (0)
PL
9 tháng 6 2018 lúc 11:28

Bài 1.

Ta có : \(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}=\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}=\dfrac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}=\left(\sqrt{a}+\sqrt{b}\right)\left(\dfrac{a+b-\sqrt{ab}}{\sqrt{ab}}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\dfrac{a+b}{\sqrt{ab}}-1\right)\)Áp dụng BĐT Cauchy cho các số dương a,b , ta có :

a + b ≥ \(2\sqrt{ab}\)

\(\dfrac{a+b}{\sqrt{ab}}\) ≥ 2

\(\dfrac{a+b}{\sqrt{ab}}-1\) ≥ 1

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\dfrac{a+b}{\sqrt{ab}}-1\right)\)\(\sqrt{a}+\sqrt{b}\)

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)\(\sqrt{a}+\sqrt{b}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
DN
Xem chi tiết
TT
Xem chi tiết
VQ
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
CL
Xem chi tiết
H24
Xem chi tiết