NU

Chứng minh nếu \(a=\log_{12}18;b=\log_{24}54\) thì \(ab+5\left(a-b\right)=1\)

PV
12 tháng 5 2016 lúc 11:44

Ta có : 

\(a=\log_{12}18=\frac{\log_218}{\log_212}=\frac{\log_2\left(2.3^2\right)}{\log_2\left(2^2.3\right)}=\frac{1+2\log_23}{2+\log_23}\)

\(\Rightarrow a\left(a+\log_23\right)=1+2\log_23\Leftrightarrow\log_23=\frac{1-2a}{a-2}\left(1\right)\)

\(b=\log_{24}54=\frac{\log_254}{\log_224}=\frac{\log_2\left(2.3^2\right)}{\log_2\left(2^2.3\right)}=\frac{1+3\log_23}{3+\log_23}\)

\(\Rightarrow b\left(3+\log_23\right)=1+3\log_23\Leftrightarrow\log_23=\frac{1-3b}{b-3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{1-2a}{a-2}=\frac{1-3b}{b-3}\Leftrightarrow\left(1-2a\right)\left(b-3\right)=\left(1-3b\right)\left(a-2\right)\)

                                           \(\Leftrightarrow ab+5\left(a-b\right)=1\Rightarrow\) Điều phải chứng minh

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
DA
Xem chi tiết
NN
Xem chi tiết
ML
Xem chi tiết
DD
Xem chi tiết
DT
Xem chi tiết
TH
Xem chi tiết
NK
Xem chi tiết
LH
Xem chi tiết