\(A=n\left(n^2+1\right)\left(n^2+4\right)\)
+ n ≡ 0 (mod 5)
=> n⋮5 => A⋮5
+ n ≡ 1 (mod 5)
=> n2 ≡ 1 (mod 5)
=> n2 + 4⋮5
=> A⋮5
+ n ≡ 2 (mod 5)
=> n2 ≡ 4 (mod 5)
=> n2 + 1⋮5
=> A⋮5
+ n ≡ 3 (mod 5)
=> n2 ≡ 32 ≡ 4 (mod 5)
=>n2 + 1⋮5
=> A⋮5
+ n ≡ 4 (mod 5)
=>n2 ≡ 42 ≡ 1 (mod 5)
=> n2 +4⋮5
=> A⋮5
Vậy A luôn chia hết cho 5.