PD

chứng minh hằng đẳng thức :  (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)

NN
29 tháng 10 2015 lúc 20:02

(a+b+c)^3

=(a+b)^3+3(a+b)^2c+3(a+b)c^2+c^3

=a^3+3a^2b+3ab^2+b^3+3(a^2+2ab+b^2)c+3(a+b)c^2+c^3

=a^3+b^3+c^3+3a^2c+6abc+3b^2c+3ac^2+3bc^2

=a^3+b^3+c^3+(3a^2c+3abc)+(3abc+3b^2c)+(3ac^2+3bc^2)

=a^3+b^3+c^3+3ac(a+b)+3bc(a+b)+3c^2(a+b)

=a^3+b^3+c^3+3(a+b)(ac+bc+c^2)

=a^3+b^3+c^3+3(a+b)[(ac+bc)+c^2]

=a^3+b^3+c^3+3(a+b)c(a+b+c)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
PB
Xem chi tiết
AT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết