Violympic toán 9

PM

Chứng minh: \(\frac{1}{a^2-ab+b^2}+\frac{1}{b^2-bc+c^2}+\frac{1}{c^2-ac+c^2}\ge\frac{12}{\left(a+b+c\right)^2}\)với a,b,c là các số thực dương không âm

PM
7 tháng 5 2020 lúc 22:35

Nguyễn Việt Lâm

Bình luận (0)
NL
8 tháng 5 2020 lúc 0:56

Chắc là số thực ko âm không có 2 số nào đồng thời bằng 0

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(c-b\le0\Rightarrow b^2+c\left(c-b\right)\le b^2\ge\frac{1}{b^2-bc+c^2}\ge\frac{1}{b^2}\)

Tương tự \(\frac{1}{a^2-ca+c^2}\ge\frac{1}{a^2}\)

\(\Rightarrow VT\ge\frac{1}{a^2-ab+b^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{a^2-ab+b^2}+\frac{a^2+b^2}{\left(ab\right)^2}\)

\(VT\ge\frac{1}{a^2-ab+b^2}+\frac{a^2-ab+b^2}{\left(ab\right)^2}+\frac{1}{ab}\ge2\sqrt{\frac{a^2-ab+b^2}{\left(ab\right)^2\left(a^2-ab+b^2\right)}}+\frac{1}{ab}\)

\(VT\ge\frac{3}{ab}\ge\frac{12}{\left(a+b\right)^2}\ge\frac{12}{\left(a+b+c\right)^2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b>0\\c=0\end{matrix}\right.\) và hoán vị

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
AR
Xem chi tiết
NN
Xem chi tiết
CH
Xem chi tiết
PN
Xem chi tiết
VH
Xem chi tiết