Violympic toán 9

CH

Cho a,b,c là các số thực dương. Chứng minh rằng

\(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4\left(a+b+c\right)}\)

DD
5 tháng 1 2020 lúc 11:21

\(BĐT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Áp dụng BĐT Bunhi kết hợp với Nesbit :

\(VT=\left(\sqrt{a}^2+\sqrt{b}^2+\sqrt{c}^2\right)\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

Vậy BĐT đc chứng minh . Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
BK
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết