VH

chứng minh các cặp số sau nguyên tố cùng nhau

a) 3n+1 và 6n+3

b)2n+1 và 6n+5

NT
3 tháng 1 2022 lúc 21:24

a: Gọi a là UCLN(3n+1;6n+3) 

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

Bình luận (0)
NA
3 tháng 1 2022 lúc 21:25

                                              Bài giải
 

a: Gọi a là UCLN(3n+1;6n+3) 

⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1

Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau

b: Gọi a là UCLN(2n+1;6n+5)

⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a

mà 2n+1 là số lẻ

nên a=1

Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
TL
Xem chi tiết
DQ
Xem chi tiết
TM
Xem chi tiết
VD
Xem chi tiết
HT
Xem chi tiết
VL
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết