1. Cho tam giác ABC cân tại A. Tia phân giác Ax của góc A cắt BC tại H. Trên AB lấy điểm M,trên tia đối của tia CA lấy điểm N sao cho BM=CN.
a. Nối MN cắt BC tại I. Chứng minh I là trung điểm của MN
b. Đường trung trực của MN cắt Ax tại O. Chứng minh OC vuông góc AC
c. Cm : 4/BC2 = 1/AB2 + 1/AC2
d. Biết AB= 6 cm,OB = 4,5 cm. Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A. D thuộc AC sao cho DC = 2DA . Kẻ DE vuông góc Bc tại E.
Chứng minh (1/ AB ^2) + ( 1/AC^2) = 4/9DE^2
Cho tam giác ABC cân tại A, trên cạnh AB lấy D, trên cạnh BC lấy E sao cho hình chiếu của DE lên BC bằng 1 nửa BC. Chứng minh: đường thẳng vuông góc với DE tại E luôn đi qua 1 điểm cố định.
Cho tam giác ABC cân tại A, trên cạnh AB lấy D, trên cạnh BC lấy E sao cho hình chiếu của DE lên BC bằng 1 nửa BC. Chứng minh: đường thẳng vuông góc với DE tại E luôn đi qua 1 điểm cố định.
Tam giác ABC vuông tại A, AB = a, AC = 3a. Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC
Chứng minh DE/DB = DB/DC
Cho tam giác ABC có AB=12cm, AC=16cm, BC=20cm.
a, Chứng minh: tam giác ABC vuông tại A
b, Tính đường cao AH
c, Chứng minh: AB.cosB + AC.cosC = 20cm
Cho tam giác ABC vuông tại A . Từ trung điểm E của cạnh AC kẻ EF vuông góc với AC tại F
a) Cho BC = 20cm, sinC = 0,6. Giải tam giác ABC;
b) Chứng minh rằng : AC2 = 2CF.CB
c) Chứng minh : AF = BC.cosC
Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC, kẻ EF vuông góc với BC tại F
a) Cho BC = 20 cm và sinC = 0,6. Giải tam giác ABC
b) Chứng minh AC2 = \(2CF\times CB\)
c) Chứng minh AF = BC ✖ cosC
Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.
cho đường tròn tâm O, đường kính BC, lấy điểm a trên cung bc sao cho AB<AC. Trên OC lấy điểm D, từ D kẻ đường thẳng vuông góc với BC cắt AC tại E.
a) chứng minh tứ giác ABDE nội tiếp
b) Chứng minh góc DAE = góc DBE
c) Đường cao AH của tam giác ABC cắt đường tròn tại F. Chứng minh: HF. DC = HC . ED
d) Chứng minh BC là tia phân giác của góc ABF