Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

CHỦ ĐỀ: CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ
NGHUYÊN
1 Tìm số nguyên n để:
b, \(n^3-3n^2-3n-1\) chia hết cho \(n^2+n-1\)

Làm theo chủ đề !

AH
21 tháng 10 2023 lúc 23:12

Lời giải:
$n^3-3n^2-3n-1=n(n^2+n-1)-4(n^2+n-1)+2n-5$

$=(n-4)(n^2+n-1)+2n-5$

Để $n^3-3n^2-3n-1\vdots n^2+n-1$ thì:

$2n-5\vdots n^2+n-1(1)$

$\Rightarrow n(2n-5)\vdots n^2+n-1$
$\Rightarrow 2(n^2+n-1)-7n+2\vdots n^2+n-1$
$\Rightarrow 7n-2\vdots n^2+n-1(2)$

Từ $(1); (2)\Rightarrow 7n-2-3(2n-5)\vdots n^2+n-1$

$\Rightarrow n+13\vdots n^2+n-1(3)$

Từ $(1); (3)\Rightarrow 2(n+13)-(2n-5)\vdots n^2+n-1$
$\Rightarrow 31\vdots n^2+n-1$

$\Rightarrow n^2+n-1\in\left\{\pm 1; \pm 31\right\}$

Đến đây bạn xét các TH để tìm $n$ thôi.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DL
Xem chi tiết
CL
Xem chi tiết
AT
Xem chi tiết
AT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết