MB

Cho(O;R) và điểm A nằm ngoài(O). Vẽ đường tròn đường kính OA, đường tròn này cắt (O) tại B và C. Vẽ BI là đường kính của đường tròn đường kính OA, vẽ BK là đường kính của (O).c/m

a) AB, AC là hai tiếp tuyến của (O)

b) IK là tiếp tuyến của (B;BC) 

NT
23 tháng 10 2023 lúc 21:44

a: Gọi E là trung điểm của OA

=>E là tâm đường tròn đường kính OA

Xét (E) có

ΔOBA nội tiếp

OA là đường kính

Do đó: ΔOBA vuông tại B

=>AB vuông góc OB tại B

=>AB là tiếp tuyến của (O)

Xét (O) có

ΔOCA nội tiếp

OA là đường kính

Do đó: ΔOCA vuông tại C

=>AC vuông góc với CO tại C

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCK nội tiếp

BK là đường kính

Do đó: ΔBCK vuông tại C

=>BC vuông góc CK tại C

Xét (E) có

ΔBCI nội tiếp

BI là đường kính

Do đó: ΔBCI vuông tại C

=>BC vuông góc CI tại C

\(\widehat{KCI}=\widehat{KCB}+\widehat{ICB}\)

\(=90^0+90^0\)

\(=180^0\)

=>K,C,I thẳng hàng

Xét (B;BC) có

BC là bán kính

KI vuông góc với BC tại C

Do đó: KI là tiếp tuyến của (B;BC)

Bình luận (0)
HT
6 tháng 11 2024 lúc 20:47

Hình 

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết