H24

\(choA=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{n^2}+...+\dfrac{1}{2004^2}\)

\(chứngminh\dfrac{1}{65}< A< \dfrac{1}{4}\)

NL
16 tháng 1 2024 lúc 20:06

\(A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{2003.2004}\)

\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{2004}< \dfrac{1}{4}\)

Đồng thời:

\(A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{2004.2005}\)

\(A>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{2004}-\dfrac{1}{2005}\)

\(A>\dfrac{1}{5}-\dfrac{1}{2005}=\dfrac{80}{401}>\dfrac{50}{500}>\dfrac{1}{10}>\dfrac{1}{65}\)

Vậy \(\dfrac{1}{65}< A< \dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
XT
Xem chi tiết
XT
Xem chi tiết
LP
Xem chi tiết
GP
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
CL
Xem chi tiết
H24
Xem chi tiết