Bạn tham khảo các câu trả lời của mọi người tại đây:
Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath
Và đây củng chính là Moldova TST 2005
Một cách giải khác mình lấy được trên mạng
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bạn tham khảo các câu trả lời của mọi người tại đây:
Câu hỏi của zZz Cool Kid zZz - Toán lớp 8 - Học toán với OnlineMath
Và đây củng chính là Moldova TST 2005
Một cách giải khác mình lấy được trên mạng
Cho a,b,c dương thỏa mãn \(a^4+b^4+c^4=3\)
Chứng minh rằng:\(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le1\)
Cho a,b,c là các số dương thỏa mãn : \(a^4+b^4+c^4=3\)
Chứng minh rằng : \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le1\)
cho \(\hept{\begin{cases}a,b,c>0\\a^4+b^4+c^4=3\end{cases}}\).cmr:\(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\)\(\le\)1
Cho a,b >0 sao cho a+b+c=1 CMR \(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\)
cho a,b,c là các số dương thỏa mãn
a4+b4+c4=3
chứng minh rằng : \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le1\)
a, b, c \(\ge\)0; \(\frac{a}{1+bc}+\frac{b}{1+ac}+\frac{c}{1+ab}=3\). CM: \(\frac{a}{1+a+bc}+\frac{b}{1+b+ac}+\frac{c}{1+c+ab}\ge\frac{3}{4}\)
Cho a,b,c\(\ge1\)CMR \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)
Cho \(a;b;c>0\)thỏa mãn \(a^4+b^4+c^4=3\)Tìm GTLN
\(A=\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\)
Cho các số thựa dương a,b,c thỏa mãn a2+b2+c2=14.CMR:
\(\frac{a+b}{4+bc}+\frac{b+c}{4+ac}+\frac{c+a}{4+ab}\ge\frac{3}{2}\)