§1. Bất đẳng thức

TC

Choa,b,c>0 cmr:

a^8+b^8+c^8>=(abc)^3.(1/a +1/b +1/c)

DV
6 tháng 7 2016 lúc 9:36

Áp dụng bất đẳng thức  a^2+b^2+c^2 > ab+bc+ac ta có : 

a^8 + b^8 + c^8 > (ab)^4 + (bc)^4 + (ca)^4 > (ab)^2.(bc)^2 + (bc)^2.(ca)^2 + (ca)^2.

(ab)^2 
> ab.bc.bc.ca + bc.ca.ca.ab + ca.ab.ab.bc = a^2.b^2.c^2(bc + ab + ac) 


\(\Rightarrow\)  (a^8 + b^8 + c^8)/(a^3.b^3.c^3) > a^2.b^2.c^2(ab + bc + ca)/(a^3.b^3.c^3) = (ab + bc

+ ca)/abc = 1/a + 1/b + 1/c 

\(\Rightarrow\) a^8 + b^8 + c^8 > (abc)^3 + (1/a + 1/b + 1c) (đpcm)

Bình luận (0)
HN
6 tháng 7 2016 lúc 20:07

Ta có : \(a^8+b^8+c^8\ge\left(abc\right)^3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (1)

\(\Leftrightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)

Áp dụng bất đẳng thức phụ : \(x^2+y^2+z^2\ge xy+yz+zx\) (có thể chứng minh bằng biến đổi tương đương)

Được : \(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge a^4b^4+b^4c^4+c^4a^4\)(2)

Lại có : \(a^4b^4+b^4c^4+c^4a^4=\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ac\right)\) (3)

Từ (2) và (3) ta có : \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)

Vậy (1) được chứng minh.

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
TC
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
PL
Xem chi tiết
PT
Xem chi tiết