Chọn C.
Giả sử w = x + yi (x,y ∈ R) là một căn bậc hai của số phức z = 3 + 4i.
Ta có:
Do đó z có hai căn bậc hai là z = 2 + i hoặc z = -2 - i.
Chọn C.
Giả sử w = x + yi (x,y ∈ R) là một căn bậc hai của số phức z = 3 + 4i.
Ta có:
Do đó z có hai căn bậc hai là z = 2 + i hoặc z = -2 - i.
Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = | z + 2 | 2 - | z - i | 2 đạt giá tri lớn nhất. Tính môđun của số phức z+i
Lập phương trình bậc hai có nghiệm là:
a) 1 + i 2 và 1 − i 2 ;
b) 3 + 2i và 3 − 2i;
c) − 3 + i 2 và − 3 − i 2 .
Cho số phức z = ( 2 + i)( 3 - i) Tìm phần thực a và phần ảo b của số phức z ¯
A. a = 7 ; b = 1.
B. a = 7 ; b = -1.
C. a = - 7; b = 1.
D. a = -7; b = - 1.
Cho số phức z thỏa mãn | z -3 - 4i| = 5 .Tìm |z| để biểu thức: P = |z + 2|2 - |z – i|2 đạt giá trị lớn nhất?
B. 10
Cho số phức z thỏa mãn |z - 3 - 4i| = 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = | z + 2 | 2 - | z - i | 2 . Tính môđun của số phức w = M + mi ?
A. |w| = 2315
B. |w| = 1258
C. |w| = 3 137
D. |w| = 2 309
Cho số phức z thỏa |z-3+4i| = 2 và w = 2z + 1 - i Khi đó |w| có giá trị lớn nhất là
A. 4 + 47
B. 2 + 130
C. 4 + 130
D. 16 + 74
Lập phương trình bậc hai có nghiệm là: − 3 + i 2 và − 3 − i 2
Tìm nghịch đảo của số phức z, biết z thỏa mãn | z - 2i| =| z ¯ + 2 + 4i| và z - i z ¯ + i là số thuần ảo.
Số phức z thỏa mãn 3 - 2 i + z ¯ i là số thực và z + i = 2 ,Phần ảo của z là:
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .