Bài 5c.: Tương giao hai đồ thị. Biện luận số nghiệm phương trình.

PB

Cho \(y=x^3-4mx+2\left(C_1\right)\) và \(y=3x^2-4m\left(C_2\right)\). Biện luận số giao điểm của \(C_1;C_2\)

TH
21 tháng 4 2016 lúc 22:00

Xét phương trình hoành độ giao điểm của \(C_1\)  và \(C_2\)

\(x^3-4mx+2=3x^2-4m\left(1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-4m-2\right)=0\)

\(\Leftrightarrow x=1\) hoặc \(x^2-2x-4m-2=0\left(2\right)\)(\(\Delta'=4m+3\)

Số giao điểm của  \(C_1\)  và \(C_2\) bằng số nghiệm của phương trình (1). Do đó 

\(\Delta'< 0\Leftrightarrow m< -\frac{3}{4}:\left(2\right)\)vô nghiệm \(\Rightarrow\left(1\right)\) có nghiệm duy nhất (x = 1)

                                                            \(\Rightarrow\)  \(C_1\)  và \(C_2\) có một giao điểm

\(\Delta'=0\Leftrightarrow m=-\frac{3}{4}:\left(2\right)\)trở thành \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\), trong trường hợp này, (1) cũng có nghiệm duy nhất (x = 1) \(\Rightarrow\) \(C_1\)  và \(C_2\) có một giao điểm

\(\Delta'>0\Leftrightarrow m>-\frac{3}{4}:\left(2\right)\) có 2 nghiệm phân biệt. Ta thấy \(t\left(1\right)=-4m-3\ne0\) với mọi \(m>-\frac{3}{4}\Rightarrow1\) không phải là nghiệm của (2) \(\Rightarrow\left(1\right)\) có 3 nghiệm phân biệt 

                                      \(\Rightarrow\) \(C_1\)  và \(C_2\) có ba giao điểm

Kết luận : 

- Với \(m\le-\frac{3}{4}\)  \(C_1\)  và \(C_2\) có một giao điểm

- Với \(m>-\frac{3}{4}\)  \(C_1\)  và \(C_2\) có 3 giao điểm

 

 

 

 

  
Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
LB
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
MN
Xem chi tiết
BA
Xem chi tiết