Bài 3: Liên hệ giữa phép nhân và phép khai phương

DH

Cho \(x,y,z>0;x+y+z=3\)

Tìm max : \(P=\sum\dfrac{xy}{\sqrt{z^2+3}}\)

AH
23 tháng 11 2017 lúc 0:22

Lời giải:

Theo hệ quả của BĐT AM-GM:

\(x^2+y^2+z^2\geq xy+yz+xz\)

\(\Leftrightarrow (x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow xy+yz+xz\leq 3\)

Do đó:

\(P=\sum \frac{xy}{\sqrt{z^2+3}}\leq \sum \frac{xy}{\sqrt{z^2+xy+yz+xz}}\)

\(\Leftrightarrow P\leq \sum \frac{xy}{\sqrt{(z+x)(z+y)}}\) (1)

Áp dụng BĐT AM-GM:

\(\frac{2xy}{\sqrt{(z+x)(z+y)}}\leq \frac{xy}{z+x}+\frac{xy}{z+y}\)

\(\frac{2yz}{\sqrt{(y+x)(x+z)}}\leq \frac{yz}{y+x}+\frac{yz}{x+z}\)

\(\frac{2xz}{\sqrt{(x+y)(y+z)}}\leq \frac{xz}{x+y}+\frac{xz}{z+y}\)

Cộng theo vế:

\(2\sum \frac{xy}{\sqrt{(z+x)(z+y)}}\leq \frac{y(x+z)}{x+z}+\frac{x(y+z)}{y+z}+\frac{z(x+y)}{x+y}\)

\(\Leftrightarrow 2\sum \frac{xy}{\sqrt{(z+y)(z+x)}}\leq x+y+z=3\)

\(\Leftrightarrow \sum \frac{xy}{\sqrt{(z+y)(z+x)}}\leq \frac{3}{2}(2)\)

Từ \((1);(2)\Rightarrow P\leq \frac{3}{2}\Leftrightarrow P_{\max}=\frac{3}{2}\)

Dấu bằng xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
LD
Xem chi tiết
NH
Xem chi tiết
NG
Xem chi tiết
NN
Xem chi tiết
KM
Xem chi tiết
LN
Xem chi tiết
NN
Xem chi tiết
TD
Xem chi tiết