Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

AT

Cho x,y,z>0 thỏa mãn \(x^2+y^2+z^2+2xy=3\left(x+y+z\right)\).Tìm GTNN \(P=x+y+z+\frac{20}{\sqrt{x+z}}+\frac{20}{\sqrt{y+2}}\)

NL
26 tháng 2 2020 lúc 15:15

Số hạng cuối là \(\frac{20}{\sqrt{y+2}}\) hay \(\frac{20}{\sqrt{y+z}}\) vậy bạn?

Bình luận (0)
 Khách vãng lai đã xóa
NL
26 tháng 2 2020 lúc 15:33

\(3\left(x+y+z\right)=\left(x+y\right)^2+z^2\ge\frac{1}{2}\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le6\)

\(P\ge x+y+z+\frac{80}{\sqrt{x+z}+\sqrt{y+2}}=x+y+z+\frac{320}{2.2\sqrt{x+z}+2.2\sqrt{y+2}}\)

\(P\ge x+y+z+\frac{320}{4+x+z+4+y+2}=x+y+z+\frac{320}{x+y+z+10}\)

\(P\ge x+y+z+10+\frac{256}{x+y+z+10}+\frac{64}{x+y+z+10}-10\)

\(P\ge2\sqrt{\frac{256\left(x+y+z+10\right)}{x+y+z+10}}+\frac{64}{6+10}-10=26\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;2;3\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
PN
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
CL
Xem chi tiết