Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 1: Căn bậc hai

NA

Cho x,y,z là các số dương và \(x+y+z\ge3\)

Chứng minh rằng : \(P=\frac{x}{\sqrt{y}}+\frac{y}{z}+\frac{z}{\sqrt{x}}\ge3\)

HP
10 tháng 3 2020 lúc 20:49

Đặt \(a=\sqrt{x},b=\sqrt{y},c=\sqrt{z}\left(a,b,c>0\right)\)

Khi đó :

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)\(a^2+b^2+c^2\ge3\)

\(\Leftrightarrow P=\frac{a^4}{a^2b}+\frac{b^4}{cb^2}+\frac{c^4}{ac^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+cb^2+ac^2}\) ( theo BĐT cô-si schwarz )

Ta có :

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)=\left(a^3+b^2a\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

\(\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2b+b^2c+c^2a\le\frac{1}{3}\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\sqrt{3}}{3}\sqrt{\left(a^2+b^2+c^2\right)^3}\)

Khi đó :

\(P\ge\sqrt{3}.\frac{\left(a^2+b^2+c^2\right)^2}{\sqrt{\left(a^2+b^2+c^2\right)^3}}=\sqrt{3\left(a^2+b^2+c^2\right)}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=1\Rightarrow x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
KB
Xem chi tiết
AT
Xem chi tiết
AD
Xem chi tiết
HV
Xem chi tiết
PC
Xem chi tiết
NB
Xem chi tiết
NV
Xem chi tiết
HT
Xem chi tiết