\(P+3=\frac{x^3}{y^2}+x+\frac{y^3}{z^2}+y+\frac{z^3}{x^2}+z\)
\(P+3\ge2\sqrt{\frac{x^4}{y^2}}+2\sqrt{\frac{y^4}{z^2}}+2\sqrt{\frac{z^4}{x^2}}=2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\)
Theo bất đẳng thức Svacso ta có
\(P+3\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge2\left(\frac{\left(x+y+z\right)^2}{x+y+z}\right)=2\left(x+y+z\right)=6\)
dấu = xay ra khi x = y = z = 1
\(\Rightarrow P\ge3\)
\(P+3=\frac{x^3}{y^2}+x+\frac{y^3}{z^2}+y+\frac{z^3}{x^2}+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\)
\(\ge\frac{2\left(x+y+z\right)^2}{x+y+z}=2\left(x+y+z\right)=6\)
\(\Leftrightarrow P\ge3\)
Dấu bằng xảy ra khi x=y=z=1
Áp dụng BĐT AM - GM, ta có: \(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^4}{y^2}}=2.\frac{x^2}{y}\)
\(\frac{x^2}{y}+y\ge2\sqrt{x^2}=2x\Rightarrow2.\frac{x^2}{y}+2y\ge4x\Rightarrow2.\frac{x^2}{y}\ge4x-2y\)
Từ đó suy ra \(\frac{x^3}{y^2}+x\ge4x-2y\Rightarrow\frac{x^3}{y^2}\ge3x-2y\)
Tương tự, ta có: \(\frac{y^3}{z^2}\ge3y-2z\); \(\frac{z^3}{x^2}\ge3z-2x\)
\(\Rightarrow P\ge3\left(x+y+z\right)-2\left(x+y+z\right)=x+y+z=3\)
Đẳng thức xảy ra khi x = y = z = 1