Ôn tập: Bất phương trình bậc nhất một ẩn

H24

Cho x>y>o. Chứng minh rằng: \(\dfrac{x-y}{x+y}\)<\(\dfrac{x^2-y^2}{x^2+y^2}\)

MS
2 tháng 5 2018 lúc 15:18

Ta có: \(\left\{{}\begin{matrix}\dfrac{x-y}{x+y}=\dfrac{x+y-2y}{x+y}=1-\dfrac{2y}{x+y}\\\dfrac{x^2-y^2}{x^2+y^2}=\dfrac{x^2+y^2-2y^2}{x^2+y^2}=1-\dfrac{2y^2}{x^2+y^2}\end{matrix}\right.\)

bđt cần chứng minh tương đương với:

\(\dfrac{2y}{x+y}>\dfrac{2y^2}{x^2+y^2}\Leftrightarrow\dfrac{2y\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}>\dfrac{2y^2\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)

\(\Rightarrow2x^2y+2y^3>2y^2x+2y^3\)

\(\Rightarrow2x^2y>2y^2\Leftrightarrow x>y\) (đúng)

\(\Rightarrow\) bất đẳng thức cần cm đúng. (đpcm)

Bình luận (1)

Các câu hỏi tương tự
LQ
Xem chi tiết
NT
Xem chi tiết
QN
Xem chi tiết
CT
Xem chi tiết
HL
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
HD
Xem chi tiết
PK
Xem chi tiết