Cho \(x+y=1\)
Ta có :
\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2+y^2-xy\right)-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2.1.\left[\left(x+y\right)^2-3xy\right]-3\left[1-2xy\right]\)
\(=2\left[1-3xy\right]-3-\left(1-2xy\right)\)
\(=2-6xy-3+6xy\)
\(=1\)