Đây chỉ nghĩ thôi nha
Ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\frac{1}{2}\ge\sqrt{xy}\)
\(\Leftrightarrow\frac{1}{4}\ge xy\)( dấu = xảy ra khi và chỉ khi x=y=1/2)
Mặt khác: \(x^2+y^2\ge2xy\ge2\cdot\frac{1}{4}=\frac{1}{2}\)
Vậy Min của \(x^2+y^2\)là 1/2 tại x=y=1/2
Câu b) Lấy cái trên câu a)
Ta có: \(\frac{1}{4}\ge xy\)
Suy ra: \(B=3-xy\ge3-\frac{1}{4}=\frac{11}{4}\)
Vậy min B=11/4