Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

QL

Cho x,y>0 và x+y=2. CMR:

\(x^2y^2\left(x^2+y^2\right)\le2\)

TK
10 tháng 5 2019 lúc 17:53

Áp dụng côsi cho 3 số ta có 

\(2xy+2xy+\left(x^2+y^2\right)\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\) 

=> \(4+2xy\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\)

Mà \(2xy\le\frac{\left(x+y\right)^2}{2}=2\)

=> \(3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\le6\)

=> \(x^2y^2\left(x^2+y^2\right)\le2\)( Điều phải chứng minh)

Dấu bằng xảy ra khi x=y=1

Bình luận (0)
CM
10 tháng 5 2019 lúc 20:54

Cách khác nè

\(x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.\left(x^2+y^2\right)2xy\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(x+y\right)^4}{4}=\frac{1}{2}.\frac{4}{4}.\frac{16}{4}=2\left(đpcm\right)\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+y=2\end{cases}\Leftrightarrow x=y=1}\) 

:))

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
TN
Xem chi tiết
TM
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
KD
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết