H24

Cho x,y>0 và x+y=1 Tìm min \(\left(1-\frac{1}{x^2}\right).\left(1-\frac{1}{y^2}\right)\)

LH
30 tháng 12 2017 lúc 15:44

một khu đất hình chữ nhật có chu vi bằng 65 chiều rộng bằng 1/4 chiều dai, nguoi ta đao ao hết 62,5%diện tích khu đấtdiện tích còn lại để trồng hoa.Tính dienj tích tròng hoa?

Bình luận (0)
PT
30 tháng 12 2017 lúc 15:50

\(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}\)

\(=1-\frac{x^2+y^2}{x^2y^2}+\frac{1}{x^2y}\)

\(=1-\frac{\left(x+y\right)^2-2xy}{x^2y^2}+\frac{1}{x^2y^2}\)

\(=1-\frac{1}{x^2y^2}+\frac{2xy}{x^2y^2}+\frac{1}{x^2y^2}\)

\(=1+\frac{2}{xy}\)

Lại có: \(4xy\le\left(x+y\right)^2\)

\(\Rightarrow xy\le\frac{1}{4}\)

\(\Rightarrow\frac{2}{xy}\ge8\)

\(\Rightarrow A\ge9\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy.......

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
PH
Xem chi tiết
NS
Xem chi tiết
PD
Xem chi tiết