Sửa đề: \(Cho\)\(x;y>0.\)\(CMR:\)\(\left(x+y\right)^2+\frac{x+y}{2}\ge2x\sqrt{y}+2y\sqrt{x}\)
Ta có: \(x+y\ge2\sqrt{xy}\)
\(\Rightarrow2\left(x+y\right)\ge x+2\sqrt{xy}+y\)
\(\Rightarrow x+y\ge\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\) \(\left(1\right)\)
Lại có: \(\left(x+y\right)^2\ge4xy\) \(\left(2\right)\)
Từ (1) và (2) suy ra
\(VT\ge4xy+\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{4}\ge2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=2x\sqrt{y}+2y\sqrt{x}\) ( BĐT AM-GM)
Bạn ơi đề khôg sai nhá nếu là dấu cộng thì ai chả làm đc đây là dấu nhân nhá