MV

Cho x^5+y^5=x-y và x>y>0.CMR:x^4+y^4<1

PT
8 tháng 12 2017 lúc 19:25

Ta có: \(x>y>0\)

\(\Rightarrow x^5-y^5< x^5+y^5\)

\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)

\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\)               \(\left(1\right)\)

Lại có: \(x>y>0\)

\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)               \(\left(2\right)\)

Từ (1) và (2) suy ra \(x^4+y^4< 1\)

Vậy \(x^4+y^4< 1\)

Bình luận (0)
H24
9 tháng 12 2017 lúc 13:05

Ta có:  \(x>y>0\)

\(\Rightarrow x^5-y^5< x^5+y^5\)

\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)

\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1^{\left(1\right)}\)

Lại có: \(x>y>0\)

\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)(2)

Từ (1) và (2) suy ra : \(x^4+y^4< 1\)

Vậy \(x^4+y^4< 1\)(đpcm)

Bình luận (0)