DA

Cho x^2+y^2+z^2=xy + yz+zx. Tính giá trị M = (x-y+1)^2019 + (y+z+1)^2020

NL
1 tháng 11 2020 lúc 10:55

M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020

=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2

=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0

⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020

⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0

Bình luận (0)
 Khách vãng lai đã xóa
DA
1 tháng 11 2020 lúc 10:57

mình không hiểu ạ

Bình luận (0)
 Khách vãng lai đã xóa
LD
1 tháng 11 2020 lúc 11:10

x2 + y2 + z2 = xy + yz + zx

⇔ 2( x2 + y2 + z2 ) = 2( xy + yz + zx )

⇔ 2x2 + 2y2 + 2z2 = 2xy + 2yz + 2zx

⇔ 2x2 + 2y2 + 2z2 = 2xy + 2yz + 2zx

⇔ 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0

⇔ ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2xz + x2 ) = 0

⇔ ( x - y )2 + ( y - z )2 + ( z - x )2 = 0

Vì : \(\hept{\begin{cases}\left(x-y\right)^2\\\left(y-z\right)^2\\\left(z-x\right)^2\end{cases}}\ge0\forall x,y,z\)=> ( x - y )2 + ( y - z )2 + ( z - x )2 ≥ 0 ∀ x, y, z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow x=y=z\)

Khi đó M = ( x - y + 1 )2019 + ( y - z + 1 )2020 < đã sửa >

               = ( x - x + 1 )2019 + ( y - y + 1 )2020

               = 12019 + 12020

               = 1 + 1 = 2

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PM
Xem chi tiết
TD
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
BM
Xem chi tiết
NH
Xem chi tiết
PM
Xem chi tiết
PD
Xem chi tiết