Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

BM

Cho \(x^2+y^2+z^2=10\). Tính giá trị của biểu thức:
\(P=\left(xy+yz+zx\right)+\left(x^2-yz\right)^2+\left(y^2-zx\right)^2+\left(z^2-xy\right)^2\)

AH
7 tháng 10 2021 lúc 8:36

Lời giải:

$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$

$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$

$=(x^2+y^2+z^2)^2=10^2=100$

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
CL
Xem chi tiết
HK
Xem chi tiết
DM
Xem chi tiết
PE
Xem chi tiết