Ta có:
\(x^2-2018x+1=0\)
\(\Leftrightarrow x^2+1=2018x\)
Do đó
\(B=\frac{x^4+x^2+1}{x^2}=\frac{\left(x^4+2x^2+1\right)-x^2}{x^2}=\frac{\left(x^2+1\right)^2-x^2}{x^2}=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{x^2}\)
\(\Leftrightarrow B=\frac{\left(2018x+x\right)\left(2018x-x\right)}{x^2}=\frac{2019x\cdot2017x}{x^2}=2019\cdot2017\)