Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

VH

cho x>=1/2,y>=1/2 cm x^2+y^2>=1/2

NT
2 tháng 2 2022 lúc 20:05

\(x^2>=\dfrac{1}{4}\)

\(y^2>=\dfrac{1}{4}\)

Do đó: \(x^2+y^2>=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Bình luận (0)
TH
2 tháng 2 2022 lúc 20:07

\(x\ge\dfrac{1}{2};y\ge\dfrac{1}{2}\)=>\(xy\ge\dfrac{1}{4}\)=>\(2xy\ge\dfrac{1}{2}\).

\(x+y\ge\dfrac{1}{2}+\dfrac{1}{2}=1\)

=>\(\left(x+y\right)^2\ge1\)

=>\(x^2+2xy+y^2\ge1\)

=>\(x^2+y^2\ge1-2xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\)

Bình luận (0)
TH
2 tháng 2 2022 lúc 20:09

Ta có \(x\ge\dfrac{1}{2},y\ge\dfrac{1}{2}\)

=>\(xy\ge\dfrac{1}{4}\)

Ta có :\(\left(x-y\right)^2\ge0\)

=>\(x^2-2xy+y^2\ge0\)

=>\(x^2-2\dfrac{1}{4}+y^2\ge0\)

=>\(x^2+y^2\ge\dfrac{1}{2}\)

       

Bình luận (1)

Các câu hỏi tương tự
NN
Xem chi tiết
LP
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
NT
Xem chi tiết