Chuyển vế biến đổi tương đương
\(\frac{1}{1+x^2}-\frac{1}{xy+1}+\frac{1}{1+y^2}-\frac{1}{xy+1}\ge0\)
Chuyển vế biến đổi tương đương
\(\frac{1}{1+x^2}-\frac{1}{xy+1}+\frac{1}{1+y^2}-\frac{1}{xy+1}\ge0\)
Cho |x|; |y| < 1. Chứng minh rằng :
\(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\).
Cho\(x;y\ge1\). Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
cho x; y>=1
chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho x,y,z >hoặc =1. Chứng minh: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
a)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
b)\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{3}{1+xyz}\)
Cho x,y,z >0 và \(x^2+y^2+z^2=1\)
Chứng minh \(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\ge\frac{1}{2}\)
1) Cho x>y và xy=1. Chứng minh rằng \(\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}\ge8\)
2) Cho xy>1 Chứng minh rằng \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)
Cho các số thực dương x,y thỏa mãn xy = 4 .Chứng minh x + y \(\ge\)4 và \(\frac{1}{x+3}+\frac{1}{y+3}\)\(\le\frac{2}{5}\)
Cho \(xy\ge1\). Chứng minh rằng:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)