DA

cho x>0. Tìm min \(P=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+\left(x^3+\dfrac{1}{x^3}\right)}\)

H24
25 tháng 2 2019 lúc 13:15

Có: \(x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3x^3.\dfrac{1}{x^3}\left(x+\dfrac{1}{x}\right)\)\(=\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)\)

Có: \(x^6+\dfrac{1}{x^6}=\left(x^2+\dfrac{1}{x^2}\right)^3-3\left(x^2+\dfrac{1}{x^2}\right)\)\(=\left[\left(x+\dfrac{1}{x}\right)^2-2\right]^3-3\left[\left(x+\dfrac{1}{x}\right)^2-2\right]\)

Đặt \(a=x+\dfrac{1}{x}\left(a\ge2\right)\)

\(P=\dfrac{a^6-\left[a^2-2\right]^3+3a^2+4}{a^3+a^3-3a}\)

\(P=\dfrac{-6a^4+15a^2+4}{2a^3-3a}\)

\(\Rightarrow6a^4+2Pa^3-15a^2-3Pa-4=0\)

\(\Rightarrow a^2\left(6a^2+2P+14\right)-\left(14a^2+3Pa+4\right)=0\)

Để pt \(\left\{{}\begin{matrix}6a^2+2P+14\\14a^2+3Pa+4\end{matrix}\right.\) có nghiệm thì

\(\left\{{}\begin{matrix}4P^2-336\ge0\\9P^2-224\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}P\le-2\sqrt{21}\\P\ge2\sqrt{21}\end{matrix}\right.\\\left[{}\begin{matrix}P\le-\dfrac{4\sqrt{14}}{3}\\P\ge\dfrac{4\sqrt{14}}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow P_{min}=\dfrac{4\sqrt{14}}{3}\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
LT
Xem chi tiết
MH
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
II
Xem chi tiết
MH
Xem chi tiết