H24

a/ giải pt: \(\sqrt{3x-2}-\sqrt{x+7}=1\)

b/ giải hpt: \(\left\{{}\begin{matrix}\dfrac{1}{x-1}+\dfrac{1}{y-2}=2\\\dfrac{2}{y-2}-\dfrac{3}{x-1}=1\end{matrix}\right.\)

HY
19 tháng 3 2017 lúc 14:40

a. Pt đã cho tương đương với:
\(\sqrt{3x-2}=\sqrt{x+7}+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\3x-2=x+7+1+2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\2x-10=2\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x-5=\sqrt{x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-10x+25=x+7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x^2-11x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left(x-2\right)\left(x-9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\end{matrix}\right.\)(Loại )
\(\Leftrightarrow x=9\)
Vậy pt có nghiệm x =9

Bình luận (0)
HY
19 tháng 3 2017 lúc 14:42

b. Đk: \(x\ne1;y\ne2\)
Đặt \(\dfrac{1}{x-1}=a;\dfrac{1}{y-2}=b\)
Khi đó hệ đã cho trở thành:
\(\left\{{}\begin{matrix}a+b=2\\-3a+2b=1\end{matrix}\right.\)
Giải hệ trên tìm a,b rồi từ đó tìm được x;y. Nhớ đối chiếu với Đk trước khi kết luận.

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
MH
Xem chi tiết
LT
Xem chi tiết
MH
Xem chi tiết
LT
Xem chi tiết
LH
Xem chi tiết
LT
Xem chi tiết
TK
Xem chi tiết
LT
Xem chi tiết