NT

Cho x, y, z là các số nguyên thoả mãn x + xy + y = 1 ; y + zy + z = 3; z + xz + x = 7. Tính giá trị
của biểu thức M = x + y^2 + z^3

NL
21 tháng 8 2021 lúc 18:52

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)

Nhân vế với vế

\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:

\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)

\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)

Bình luận (1)
NT
21 tháng 8 2021 lúc 17:55

ai giúp mk với

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
TL
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
LU
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết