Bài 6: Giải bài toán bằng cách lập phương trình.

NH

Cho x, y, z khac 0 thoa man 1/x + 1/y + 1/z = 0. Tinh P = \(\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\)

TH
17 tháng 8 2020 lúc 22:09

GT \(\Leftrightarrow xy+yz+zx=0\). Khi đó: \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3.xy.yz.zx=3x^2y^2z^2\).

Do đó: \(P=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}=3\)

Bình luận (0)
H24
17 tháng 8 2020 lúc 23:10

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=-\frac{1}{z^3}\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3\cdot\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-3\cdot\frac{1}{xy}\cdot\left(-\frac{1}{z}\right)=\frac{3}{xyz}\)

Khi đó có : \(P=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
DT
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
SH
Xem chi tiết
NH
Xem chi tiết
AN
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết