+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)
\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'
\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)
+) \(6=3\sqrt[3]{xyz}\le x+y+z\)
+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)
Dấu = xảy ra khi x = y = z = 2