\(P=\dfrac{1}{xy+\dfrac{2}{xy}}=\dfrac{1}{xy+\dfrac{1}{16xy}+\dfrac{31}{16xy}}\le\dfrac{1}{\dfrac{1}{2}+\dfrac{31}{16.\dfrac{1}{4}\left(x+y\right)^2}}\le\dfrac{1}{\dfrac{1}{2}+\dfrac{31}{4}}=\dfrac{4}{33}\)
mình nghĩ là ntn
áp dụng BĐT AM-GM
\(\dfrac{xy}{x^2y^2+2}\le\dfrac{xy}{2\sqrt{2}xy}=\dfrac{1}{2\sqrt{2}}\)
\(maxP=\dfrac{1}{2\sqrt{2}}\)
dấu = xảy ra khi x,y thỏa mãn
\(\left\{{}\begin{matrix}x+y\le1\\xy=\sqrt{2}\end{matrix}\right.\)
chắc là sai rồi