\(S=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{xy}\right)=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\right)\)
\(S\ge\left(x+y\right)^2\left(\frac{4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}\right)=\frac{6\left(x+y\right)^2}{\left(x+y\right)^2}=6\)
\(S_{min}=6\) khi \(x=y\)