Violympic toán 9

AJ

Cho x la nghiệm của pt: x2 + 3x + 1 =0

tính giá trị của biểu thức:

B= (\(x+\frac{1}{x}\))2 + \(\left(x^2+\frac{1}{x^2}\right)^2+\left(x^3+\frac{1}{x^3}\right)^2+....+\left(x^6+\frac{1}{x^6}\right)^2\)

NL
9 tháng 6 2019 lúc 8:49

Do \(x=0\) không phải nghiệm

\(x^2+3x+1=0\Leftrightarrow x+3+\frac{1}{x}=0\Leftrightarrow x+\frac{1}{x}=-3\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Rightarrow x^2+\frac{1}{x^2}=7\)

Đặt \(x_n=x^n+\frac{1}{x^n}\Rightarrow x_1=-3;x_2=7\)

\(x_1x_n=\left(x+\frac{1}{x}\right)\left(x^n+\frac{1}{x^n}\right)=x^{n+1}+\frac{1}{x^{n+1}}+x^{n-1}+\frac{1}{x^{n-1}}=x_{n+1}+x_{n-1}\)

\(\Rightarrow x_{n+1}=x_1x_n-x_{n-1}=-3x_n-x_{n-1}\)

Cho \(n=2\Rightarrow x_3=x^3+\frac{1}{x^3}=-3.x_2-x_1=-18\)

\(n=3\Rightarrow x_4=x^4+\frac{1}{x^4}=-3x_3-x_2=47\)

\(n=4\Rightarrow x_5=x^5+\frac{1}{x^5}=-3x_4-x_3=-123\)

\(n=5\Rightarrow x_6=x^6+\frac{1}{x^6}=-3x_5-x_4=322\)

Thay vào và tính, kết quả rất to

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
PG
Xem chi tiết
AD
Xem chi tiết
TN
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
AJ
Xem chi tiết
MT
Xem chi tiết