Tam giác đồng dạng

NS

Cho tứ giác lồi ABCD có hai đường chéo AC=BD .Gọi M,N,P,Q là trung điẻm của AB, BC,CD,AD. A, chứng minh M P ⊥ N Q B,dựng các tam giác vuông cân ADE,BCF CMR: M N ⊥ E F C,Dựng ngoài các tam giác cân ABX,BCY,CDZ,DAT CMR: X Z ⊥ Y T

NT
14 tháng 2 2021 lúc 21:01

a) Xét ΔABD có 

M là trung điểm của AB(gt)

Q là trung điểm của AD(gt)

Do đó: MQ là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔCBD có 

N là trung điểm của BC(gt)

P là trung điểm của CD(gt)

Do đó: NP là đường trung bình của ΔCBD(Định nghĩa đường trung bình của tam giác)

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

Xét ΔABC có

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AC=BD(gt)

và \(NP=\dfrac{BD}{2}\)(cmt)

nên MN=NP

Xét tứ giác MQPN có

MQ//NP(cmt)

MQ=NP(cmt)

Do đó: MQPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành MQPN có MN=NP(cmt)

nên MQPN là hình thoi(Dấu hiệu nhận biết hình thoi)

Ta có: MQPN là hình thoi(cmt)

nên MP\(\perp\)QN(Hai đường chéo của hình thoi MQPN)

 

Bình luận (0)

Các câu hỏi tương tự
AX
Xem chi tiết
CN
Xem chi tiết
H24
Xem chi tiết
AD
Xem chi tiết
H7
Xem chi tiết
KH
Xem chi tiết
VB
Xem chi tiết
NC
Xem chi tiết
NN
Xem chi tiết