Cho tam giác ABC vuông tại A (AB>AC), M là trung điểm BC. Gọi H là hình chiếu của M trên AC
a) Chứng minh H là trung điểm AC.
b) Từ M kẻ đường thẳng vuông góc với BC cắt AC kéo dài tại F. Chứng minh BC.HM=EM.AC
c) Gọi N là trung điểm MH. Chứng minh góc NEM = góc HBC.
d) Chứng minh BH vuông góc với EN.
P/s. Làm ơn giải chi tiết và vẽ hình giúp ạ. Mai em phải nộp rồi. :((
a) Ta có: HM⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔCAB có M là trung điểm của BC(gt)
MH//AB(cmt)
Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)