Tam giác đồng dạng

NN

Cho tam giác ABC vuông tại A (AB>AC), M là trung điểm BC. Gọi H là hình chiếu của M trên AC

a) Chứng minh H là trung điểm AC.

b) Từ M kẻ đường thẳng vuông góc với BC cắt AC kéo dài tại F. Chứng minh BC.HM=EM.AC

c) Gọi N là trung điểm MH. Chứng minh góc NEM = góc HBC.

d) Chứng minh BH vuông góc với EN.

P/s. Làm ơn giải chi tiết và vẽ hình giúp ạ. Mai em phải nộp rồi. :((

NT
19 tháng 2 2021 lúc 22:07

a) Ta có: HM⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔCAB có M là trung điểm của BC(gt)

MH//AB(cmt)

Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Bình luận (0)

Các câu hỏi tương tự
AD
Xem chi tiết
AC
Xem chi tiết
H24
Xem chi tiết
KA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BZ
Xem chi tiết
HK
Xem chi tiết
NL
Xem chi tiết