AN

Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại E kẻ EF vuông góc ad a) Chứng minh tứ giác ECDF nội tiếp Xác định tâm I b) Chứng minh CA là phân giác của góc BCF c) Chứng minh tứ giác bcef nội tiếp

NT
22 tháng 3 2021 lúc 20:24

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
OM
Xem chi tiết
PB
Xem chi tiết
VD
Xem chi tiết
MT
Xem chi tiết
QW
Xem chi tiết
GN
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết