H24

Cho tứ giác ABCD. Gọi M,N,P,Q thứ tự là trung điểm của AB,BC,CD,DA. a,CMR: Tứ giác MNPQ là hình bình hành b, So sáng chứ vi tứ giác MNPQ với tổng hai đường chéo của tứ giác ABCD

NT
29 tháng 10 2021 lúc 23:01

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)

Xét ΔBCD có

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

Bình luận (1)
VC
29 tháng 10 2021 lúc 23:29

b) ✱Xét Δ ABD có :
 AM = BM  ( gt )
AQ = DQ ( gt ) 
⇒ QM là đg trung bình của Δ ABD 
⇒ MQ = 1/2 BD
✱Xét Δ BDC có :
BN = CN ( gt )
DP = PC ( gt )
⇒ NP là đg trung bình Δ BDC 
⇒ NP = 1/2 BD
Ta có :
 Chu vi tg MNPQ là:
MN + NP + PQ + QM ⇔ 1/2 AC + 1/2 BD + 1/2 AC + 1/2 BD 
⇔ MN + NP + PQ + QM = AC + BD
Mà AC và BD là đg chéo của tg ABCD 
⇒ Chu vi tg MNPQ = tổng 2 đg chéo tg ABCD 
Đó , m ghi vô ii ko mai thầy chửi sấp mặt đấy !

Bình luận (4)