Vì \(A_1,B_1,C_1,D_1\) là trung điểm của BC , CD , DA ,AB
\(\Rightarrow S_{ADD_1}=\frac{1}{2}S_{ADB}\) , \(S_{BB_1C}=\frac{1}{2}S_{BDC}\)
\(\Rightarrow S_{ADD_1}+S_{BB_1C}=\frac{1}{2}S_{ABCD}\)
Tương tự ta có : \(S_{ABA_1}+S_{BB_1C}=\frac{1}{2}S_{ABCD}\)
\(\Rightarrow S_{ABCD}=S_{ADD_1}+S_{BB_1C}+S_{ABA_1}+S_{CC_1D}\)
Mà :
\(S_{ABCD}=S_{AMD_1}+S_{AMQC_1}+S_{C_1QD}+S_{DQPB_1}+S_{CPB_1+S_{PCA_1N}+S_{BNA_1}+S_{BNMD_1}+S_{MNPQ}}\)
\(S_{ADD_1}+S_{BB_1C}+S_{ABA_1}+S_{CC_1D}=S_{AD_1M}+S_{AMQC_1}+S_{DQC_1}+S_{DQC_1}\)
Vì \(A_1,B_1,C_1,D_1\) là trung điểm của BC,CD,DA,AB
\(\Rightarrow S_{ADD_1}=\frac{1}{2}S_{ADB},S_{BB_1C}=\frac{1}{2}S_{BDC}\)
\(\Rightarrow S_{ADD_1}+S_{BB_1C}=\frac{1}{2}S_{ABCD}\)
Tương tự: \(S_{ABA_1}+S_{CC_1D}=\frac{1}{2}S_{ABCD}\)
\(\Rightarrow S_{ABCD}=S_{ADD_1}+S_{BB_1C}+S_{ABA_1}+S_{CC_1D}\)
Mà: \(S_{ABCD}=S_{AMD_1}+S_{AMQC_1}+S_{C_1QD}+S_{DQPB_1}+S_{CPB_1}+S_{PCA_1N}+S_{BNA_1}+S_{BNMD_1}+S_{MNPQ}\)\(S_{ADD_1}+S_{BB_1C}+S_{ABA_1}+S_{CC_1D}=S_{AD_1M}+S_{AMQC_1}+S_{DQC_1}+S_{DQC_1}+S_{DQPB_1}+S_{B_1CP}+S_{B_1CP}+S_{CPNA_1}+S_{BNA_1}+S_{BNA_1}+S_{BD_1MN}+S_{AD_1M}\)
\(\Rightarrow S_{MNPQ}=S_{AMD_1}+S_{BNA_1}+S_{CPB_1}+S_{DQC_1}\left(đpcm\right)\)