Bài 3. TÍCH CỦA VECTO VỚI MỘT SỐ

TN

Cho tứ giác ABCD , biết rằng tồn tại một điểm O sao cho các vecto \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\) có độ dài bằng nhau và o \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=0\) . Chứng minh ABCD là hình chữ nhật

AH
1 tháng 10 2020 lúc 0:32

Lời giải:

Gọi $M,N$ lần lượt là trung điểm $AB, CD$. Ta có:

$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{OM}+\overrightarrow{MA}+\overrightarrow{OM}+\overrightarrow{MB}+\overrightarrow{ON}+\overrightarrow{NC}+\overrightarrow{ON}+\overrightarrow{ND}$

$=2\overrightarrow{OM}+2\overrightarrow{ON}=\overrightarrow{0}$

$\Rightarrow \overrightarrow{OM}=-\overrightarrow{ON}$ nên $O$ là trung điểm $MN$

Tam giác $OAB$ cân tại $O$ có $OM$ là trung tuyến đồng thời là đường cao

$\Rightarrow OM\perp AB$. Hoàn toàn tương tự $ON\perp CD$

Mà $O,M,N$ thẳng hàng nên $AB\parallel CD(1)$

Tương tự, đặt $P,Q$ là trung điểm $AD, BC$ ta có:

$AD\paralle BC(2)$

Từ $(1);(2)\Rightarrow ABCD$ là hình bình hành.

$MN$ là đường trung bình của hbh $ABCD$ nên $MN\parallel BC$. Mà ở trên ta chỉ ra $OM\perp AB; O,N,M$ thẳng hàng nên $AB\perp BC$

Hình bình hành $ABCD$ có 2 cạnh kề vuông góc nên là hình chữ nhật.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TO
Xem chi tiết
LN
Xem chi tiết
CC
Xem chi tiết
LP
Xem chi tiết
LP
Xem chi tiết
EC
Xem chi tiết
BD
Xem chi tiết
NN
Xem chi tiết
PA
Xem chi tiết