Đáp án D
Gọi H là hình chiếu của O xuống (ABC)
Ta có: 1 O H 2 = 1 a 2 + 1 2 a 2 + 1 a 3 2 = 19 12 a 2 ⇒ O H = 2 a 3 19
Đáp án D
Gọi H là hình chiếu của O xuống (ABC)
Ta có: 1 O H 2 = 1 a 2 + 1 2 a 2 + 1 a 3 2 = 19 12 a 2 ⇒ O H = 2 a 3 19
Cho tứ diện OABC có OA,OB,OC đội một vuông góc, O A = a , O B = b , O C = c . Tính khoảng cách d từ O tới mặt phẳng (ABC).
A. d = a b c a 2 b 2 + b 2 c 2 + c 2 a 2
B. d = a 2 + b 2 + c 2 3
C. d = a b + b c + c a a 2 + b 2 + c 2
D. d = a 2 b 2 c 2 a 2 b 2 + b 2 c 2 + c 2 a 2
Cho tứ diện OABC có OA, OB, OC, OD đôi một vuông góc nhau, biết rằng O A = 2 O B = 3 O C = 3 a . Tính khoảng cách d từ O đến mặt phẳng (ABC).
A. d = 2 a 14
B. d = 3 a 13
C. d = 3 a 11
D. d = 3 a 10
Cho tứ diện OABC biết OA, OB, OC đôi một vuông góc với nhau, biết O A = 3 , O B = 4 và thể tích khối tứ diện OABC bằng 6. Khi đó khoảng cách từ O đến mặt phẳng (ABC) bằng:
A. 3
B. 41 12
C. 144 41
D. 12 41
Cho tứ diện OABC có ba cạnh OA;OB;OC đôi một vuông góc với nhau, O A = a 2 2 , O B = O C = a . Gọi H là hình chiếu của điểm O trên mặt phẳng (ABC)Tính thể tích khối tứ diện OABH
A. a 3 2 6
B. a 3 2 12
C. a 3 2 24
D. a 3 2 48
cho tứ diện OABC có OA,OB,OC đôi một vuông góc và OA=OB=OC=a. gọi I là trung điểm BC; H,K lần lượt là hình chiếu của O lên AB,AC.
1. Chứng minh:BC vuông góc (OAI), (OAI) vuông góc (OHK)
2. Tính d(O,(ABC))
3.Tính cosin (OA,(OHK))
4.Tính tan((OBC),(ABC))
5.Tìm đường vuông góc chung của HK,OI. tính khoảng cách giữa hai đường ấy
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và O B = O C = a 6 , O A = a . Tính góc giữa hai mặt phẳng (ABC) và (OBC).
A. 45 °
B. 90 °
C. 60 °
D. 30 °
Cho tứ diện OABC có OA=a; OB=2a; OC=3a đôi một vuông góc với nhau tại O. Lấy M là trung điểm của cạnh AC; N nằm trên cạnh CB sao cho CN=2/3 CB. Tính theo a thể tích khối chóp OAMNB
A. 2 a 3
B. a 3 6
C. 2 a 3 3
D. a 3 3
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc và A B = O C = a 6 , O A = a . Tính góc giữa hai mặt phẳng (ABC) và (OBC)
A. 60 °
B. 30 °
C. 45 °
D. 90 °
Cho tứ diện OABC có OA;OB;OC đôi một vuông góc và O A = a , O B = b , O C = c . Tính thể tích khối tứ diện OABC.
A. abc
B. abc/3
C. abc/6
D. abc/2